skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alù, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topological physics has been driving exciting progress in the area of condensed matter physics, with findings that have recently spilled over into the field of metamaterials research inspiring the design of structured materials that can govern in new ways the flow of light and sound. While so far these advances have been driven by fundamental curiosity-driven explorations, without a focused interest on their technological implications, opportunities to translate these findings into applied research have started to emerge, in particular in the context of sound control. Our team has been leading a highly collaborative research effort on advancing the field of topological acoustics, dubbed ‘New Frontiers of Sound’ and connecting it to technological opportunities for computing, communications, energy and sensing. In this comment, we outline our vision towards the future of topological sound, and its translation towards industry-relevant functionalities and operations based on extreme control of acoustic and phononic waves. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Closed, lossless optical cavities are characterized by a Hamiltonian that obeys Hermiticity, resulting in strictly real-valued resonance frequencies. By contrast, non-Hermitian wave systems are characterized by Hamiltonians with poles and zeros at complex frequencies, whose control through precise engineering of material loss and gain can lead to exotic scattering phenomena. Notably, excitation signals that oscillate at complex-valued frequencies can mimic the emergence of gain and loss, facilitating access to these non-Hermitian responses without material modifications. These findings have been advancing the fundamental understanding of wave-matter interactions and are enabling breakthroughs in metamaterials, imaging, sensing, and computing. This Review examines theoretical advances and experimental discoveries in this emerging field, demonstrating how tailored time-domain excitations offer new opportunities for wave manipulation and control. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  3. Abstract Signal processing is of critical importance for various science and technology fields. Analog optical processing can provide an effective solution to perform large-scale and real-time data processing, superior to its digital counterparts, which have the disadvantages of low operation speed and large energy consumption. As an important branch of modern optics, Fourier optics exhibits great potential for analog optical image processing, for instance for edge detection. While these operations have been commonly explored to manipulate the spatial content of an image, mathematical operations that act directly over the angular spectrum of an image have not been pursued. Here, we demonstrate manipulation of the angular spectrum of an image, and in particular its differentiation, using dielectric metasurfaces operating across the whole visible spectrum. We experimentally show that this technique can be used to enhance desired portions of the angular spectrum of an image. Our approach can be extended to develop more general angular spectrum analog meta-processors, and may open opportunities for optical analog data processing and biological imaging. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available March 21, 2026
  5. We used the transfer matrix method to investigate the conditions supporting the existence of directional bulk waves in a two-dimensional (2D) phononic crystal. The 2D crystal was a square lattice of unit cells composed of rectangular subunits constituted of two different isotropic continuous media. We established the conditions on the geometry of the phononic crystal and its constitutive media for the emergence of waves, which, for the same handedness, exhibited a non-zero amplitude in one direction within the crystal’s 2D Brillouin zone and zero amplitude in the opposite direction. Due to time-reversal symmetry, the crystal supported propagation in the reverse direction for the opposite handedness. These features may enable robust directional propagation of bulk acoustic waves and topological acoustic technology. 
    more » « less
  6. Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light–matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid–liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes. 
    more » « less
  7. We investigate a one-dimensional discrete binary elastic superlattice bridging continuous models of superlattices that showcase a one-way propagation character, as well as the discrete elastic Su–Schrieffer–Heeger model, which does not exhibit this character. By considering Bloch wave solutions of the superlattice wave equation, we demonstrate conditions supporting elastic eigenmodes that do not satisfy the translational invariance of Bloch waves over the entire Brillouin zone, unless their amplitude vanishes for a certain wave number. These modes are characterized by a pseudo-spin and occur only on one side of the Brillouin zone for a given spin, leading to spin-selective one-way wave propagation. We demonstrate how these features result from the interplay of the translational invariance of Bloch waves, pseudo-spins, and a Fabry–Pérot resonance condition in the superlattice unit cell. 
    more » « less