skip to main content


Search for: All records

Creators/Authors contains: "Alù, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Optical frequency combs, featuring evenly spaced spectral lines, have been extensively studied and applied to metrology, signal processing, and sensing. Recently, frequency comb generation has been also extended to MHz frequencies by harnessing nonlinearities in microelectromechanical membranes. However, the generation of frequency combs at radio frequencies (RF) has been less explored, together with their potential application in wireless technologies. In this work, we demonstrate an RF system able to wirelessly and passively generate frequency combs. This circuit, which we name quasi-harmonic tag (qHT), offers a battery-free solution for far-field ranging of unmanned vehicles (UVs) in GPS-denied settings, and it enables a strong immunity to multipath interference, providing better accuracy than other RF approaches to far-field ranging. Here, we discuss the principle of operation, design, implementation, and performance of qHTs used to remotely measure the azimuthal distance of a UV flying in an uncontrolled electromagnetic environment. We show that qHTs can wirelessly generate frequency combs with μWatt-levels of incident power by leveraging the nonlinear interaction between an RF parametric oscillator and a high quality factor piezoelectric microacoustic resonator. Our technique for frequency comb generation opens new avenues for a wide range of RF applications beyond ranging, including timing, computing and sensing.

     
    more » « less
  2. Acoustic resonances in open systems, which are usually associated with resonant modes characterized by complex eigenfrequencies, play a fundamental role in manipulating acoustic wave radiation and propagation. Notably, they are accompanied by considerable field enhancement, boosting interactions between waves and matter, and leading to various exciting applications. In the past two decades, acoustic metamaterials have enabled a high degree of control over tailoring acoustic resonances over a range of frequencies. Here, we provide an overview of recent advances in the area of acoustic resonances in non-Hermitian open systems, including Helmholtz resonators, metamaterials and metasurfaces, and discuss their applications in various acoustic devices, including sound absorbers, acoustic sources, vortex beam generation and imaging. We also discuss bound states in the continuum and their applications in boosting acoustic wave–matter interactions, active phononics and non-Hermitian acoustic resonances, including phononic topological insulators and the acoustic skin effect. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Tailored time variations, nonlinearities and active elements can endow metasurfaces with unique opportunities for next-generation wireless communication systems, enriching the growing platform of reconfigurable intelligent surfaces. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available August 17, 2024
  7. Abstract

    Topological phases of matter have been attracting significant attention across diverse fields, from inherently quantum systems to classical photonic and acoustic metamaterials. In photonics, topological phases offer resilience and bring novel opportunities to control light with pseudo-spins. However, topological photonic systems can suffer from limitations, such as breakdown of topological properties due to their symmetry-protected origin and radiative leakage. Here we introduce adiabatic topological photonic interfaces, which help to overcome these issues. We predict and experimentally confirm that topological metasurfaces with slowly varying synthetic gauge fields significantly improve the guiding features of spin-Hall and valley-Hall topological structures commonly used in the design of topological photonic devices. Adiabatic variation in the domain wall profiles leads to the delocalization of topological boundary modes, making them less sensitive to details of the lattice, perceiving the structure as an effectively homogeneous Dirac metasurface. As a result, the modes showcase improved bandgap crossing, longer radiative lifetimes and propagation distances.

     
    more » « less
  8. Abstract

    The growing field of quantum information technology requires propagation of information over long distances with efficient readout mechanisms. Excitonic quantum fluids have emerged as a powerful platform for this task due to their straightforward electro-optical conversion. In two-dimensional transition metal dichalcogenides, the coupling between spin and valley provides exciting opportunities for harnessing, manipulating, and storing bits of information. However, the large inhomogeneity of single layers cannot be overcome by the properties of bright excitons, hindering spin-valley transport. Nonetheless, the rich band structure supports dark excitonic states with strong binding energy and longer lifetime, ideally suited for long-range transport. Here we show that dark excitons can diffuse over several micrometers and prove that this repulsion-driven propagation is robust across non-uniform samples. The long-range propagation of dark states with an optical readout mediated by chiral phonons provides a new concept of excitonic devices for applications in both classical and quantum information technology.

     
    more » « less